Разностный метод расчета уравнений гидродинамики и его применение для моделирования разрушения

Разностный метод расчета уравнений гидродинамики и его применение для моделирования разрушения

Автор: Макеева, Инга Равильевна

Шифр специальности: 05.13.18

Научная степень: Кандидатская

Год защиты: 2003

Место защиты: Челябинск

Количество страниц: 138 с. ил.

Артикул: 2618712

Автор: Макеева, Инга Равильевна

Стоимость: 250 руб.

Оглавление
Введение
Глава 1. Априорные методы исследования свойств разностных схем.
1. Механизмы диссипации энергии в методах расчета ударных волн.
2. Разностные схемы в дифференциальном представлении.
3. Акустическое приближение
4. Метод исследования диссипативных свойств разностной схемы.
5. Метод исследования дистракции сильного разрыва
6. Метод исследования немонотонности.
Глава 2. Анализ свойств разностных схем
1. Разностная схема Д.Неймана Р.Рихтмайера.
2. Разностная схема П. Лакса.
3. Разностная схема С.К.Годунова.
4. Недивергентная разностная схема В.Ф.Куропатенко.
5. Разностная схема П.Лакса, Б.Вендрофа
Глава 3. Новая разностная схема
1. Выбор сетки. Типы интервалов
2. Разностные уравнения для ударной волны
3. Погрешности аппроксимации на ударной волне
4. Анализ устойчивости разностной схемы для ударной волны
5. Анализ монотонности и дистракции разностной схемы на ударной волне
6. Разностные уравнения для волны разрежения.
7. Погрешности аппроксимации на волне разрежения.
8. Анализ устойчивости разностной схемы на волне разрежения
9. Анализ монотонности разностной схемы на волне разрежения
. Повышение порядка аппроксимации
. Уменьшение немонотонности на слабых разрывах.
. Краткое описание программы КАМА
. Верификация разностной схемы
Глава 4. Исследование влияния свойств разностных схем на моделирование разрушения
веществ.
1. Характерные погрешности за фронтом ударной волны. Дистракция и осцилляции 9 2. Выход стационарной ударной волны на свободную поверхность. Аналитическое
решение и результаты расчетов
3. Взаимодействие двух волн разрежения с образованием откола. Аналитическое
решение.
3.1. Область стационарного течения за фронтом ударной волны.
3.2. Область центрированной волны разрежения
3.3. Область взаимодействия двух волн разрежения
3.4. Точка смены краевого условия.
3.5. Течение в области у свободной границы
3.6. Масса отколовшегося слоя
4. Зависимость положения трещины от дистракции и осцилляции разностной схемы
Выводы
Список литературы


A. Самарский [2] для обоснования интегро-иитсрполяционного подхода к конструированию разностных схем построили пример, когда неконсервативная разностная схема, обеспечивающая второй порядок точности в классе достаточно гладких коэффициентов, расходится в классе разрывных коэффициентов [2]. Однако требование консервативности не исчерпывает всех требований к разностной схеме. Дело в том, что в так называемом дивергентном уравнении энергии «сохраняется» только полная энергия S = E + 0. U2. Поэтому погрешности в определении скорости, т. Упомянутые выше требования консервативности оставляют без контроля переходы энергии из одной формы в другую, а это может исказить температуру, давление, энтропию, энтальпию и другие термодинамические величины. В [3] приведен пример, когда погрешности аппроксимации приводят к заметному искажению внутренней энергии. Для изучения свойств разностных схем разностные уравнения чаще всего рассматриваются в дифференциальной форме. В [5] показано, что для того, чтобы определить диссипативные свойства разностной схемы, нужно построить для нее уравнение производства энтропии и уравнение производства массы и исследовать остаточные члены для этих уравнений. Очевидно, что изменение энтропии из-за погрешностей аппроксимации не должно превосходить ее изменений в характерных физических процессах. Конечноразностные методы расчета нестационарных течений сжимаемых сред основываются на системе законов сохранения либо в форме Эйлера, либо в форме Лагранжа. И лагранжевы, и эйлеровы методы имеют свои достоинства и недостатки. Выбор системы координат для расчета течения газа определяется постановкой задачи. Если важны параметры потока в заданной пространственной области (например, течение газа в газопроводе, задачи обтекания жесткой поверхности и т. В связи с тем, что в этом случае сетка является неподвижной в пространстве, не возникают проблемы, связанные с сеткой. Однако, при расчете задач, связанных с течением определенной: массы вещества, применение эйлеровых координат может привести либо к неоправданному уменьшению, либо к увеличению количества точек сетки и, следовательно, к потере точности численного решения. Например, при сильном сжатии вся рассчитываемая масса вещества может попасть в один счетный интервал эйлеровой сетки, что приводит к полной потере точности. Чтобы обеспечить необходимую точность расчета центрированных волн разрежения в самом начале их существования, когда градиенты велики, С. К. Годунов предложил использовать подвижные сетки [6]. В этом случае точки сетки, связанные с контактными границами или со слабыми разрывами, движутся вместе с ними. Промежуточные точки сетки получаются по произвольному закону с сохранением определенного минимума или максимума точек. В этом случае легко проследить историю деформирования частицы вещества, не возникает проблем с отслеживанием контактных границ, местами зарождения микроповреждений, зародышей новой фазы, что особенно важно для описания сложных процессов, связанных с деформациями и фазовыми переходами. Область, в которой рассматривается движение вещества, разбивается сильными и слабыми разрывами на области гладкого течения, в которых выполняются законы сохранения в дифференциальной форме, тогда как на разрывах удовлетворяются условия совместности. Такая структура решения естественно описывается методом характеристик [7], учитывающим, в принципе, все особенности решения. От других разностных методов его отличает аппроксимация не законов сохранения, а характеристических уравнений и многократное использование операторов интерполирования. Сглаживание профилей, характерное для разностных схем с фиксированной сеткой, является минимальным в методе характеристик, так как применяемая в нем сетка строится с учетом области зависимости решения. Альтернативой методу характеристик являются разностные методы с нулевой дистракцией, выделяющие особенности в решении, например, ударные волны, слабые и контактные разрывы. В этом случае для расчета параметров течения используются алгебраические и дифференциальные уравнения - законы сохранения и их следствия, записанные для каждого типа разрыва. Примером является неоднородный метод В.

Рекомендуемые диссертации данного раздела

28.06.2016

+ 100 бесплатных диссертаций

Дорогие друзья, в раздел "Бесплатные диссертации" добавлено 100 новых диссертаций. Желаем новых научных ...

15.02.2015

Добавлено 41611 диссертаций РГБ

В каталог сайта http://new-disser.ru добавлено новые диссертации РГБ 2013-2014 года. Желаем новых научных ...


Все новости

Время генерации: 0.241, запросов: 244