Численно-аналитическое моделирование статики, устойчивости и колебаний пространственно армированных оболочек вращения

Численно-аналитическое моделирование статики, устойчивости и колебаний пространственно армированных оболочек вращения

Автор: Решетникова, Елена Васильевна

Шифр специальности: 05.13.18

Научная степень: Кандидатская

Год защиты: 2005

Место защиты: Новокузнецк

Количество страниц: 144 с. ил.

Артикул: 2771287

Автор: Решетникова, Елена Васильевна

Стоимость: 250 руб.

СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 ОСНОВНЫЕ МЕТОДЫ И РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ НАПРЯЖЕННОДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПРОСТРАНСТВЕННО АРМИРОВАННЫХ ОБОЛОЧЕЧНЫХ КОНСТРУКЦИЙ.
1.1 Объект моделирования.
1.2 Основные модели деформирования оболочечных конструкций из полимерных композиционных материалов
1.3 Анализ основных методов решения задач статики, колебаний и устойчивости оболочечных конструкций.
1.4 Постановка задач исследования. Выбор метода исследования.
2 МОДЕЛЬ ДЕФОРМИРОВАНИЯ ОБОЛОЧЕК ВРАЩЕНИЯ С ПРОИЗВОЛЬНОЙ СХЕМОЙ АРМИРОВАНИЯ.
2.1 Вариационная постановка задачи.
2.2 Кинематические и статические гипотезы
2.3 Дискретизация задачи и разрешающие уравнения статического деформирования и свободных колебаний оболочки
2.4 Разрешающие уравнения для линейной задачи устойчивости при осесимметричном докритическом состоянии
2.5 Модель деформирования трехслойной оболочки с легким заполнителем.
2.6 Выводы по главе
3 ОЦЕНКА ПОГРЕШНОСТИ ЧИСЛЕННОАБ1АЛИТИЧЕСКОГО РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ СТАТИКИ, УСТОЙЧИВОСТИ И КОЛЕБАНИЙ ОБОЛОЧЕК ВРАЩЕНИЯ.
3.1 Теоретическая оценка погрешности.
3.2 Оценка точности численного решения задач статического деформирования на контрольных примерах.
3.3 Оценка погрешности расчета собственных колебаний.
3.4 Оценка погрешности расчета устойчивости
ь 3.5 Выводы по главе.
4 ОЦЕНКА ЧУВСТВИТЕЛЬНОСТИ МОДЕЛИ К ИЗМЕНЕНИЮ СТРУКТУРНЫХ ПАРАМЕТРОВ.
4.1 Чувствительность модели составной и подкрепленной
оболочки к способу моделирования условий сопряжения
4.2 Чувствительность модели гладкой эллипсоидальной
оболочки к углу спиральности.
4.3 Чувствительность собственных частот цилиндрической
оболочки к варьированию конструктивных параметров
4.4 Чувствительность к жесткости поперечного силового набора подкрепленных цилиндрических оболочек
4.5 Чувствительность критических нагрузок гладкой цилиндрической оболочки к варьированию структурных параметров
4.6 Оценка достоверности моделирования собственных колебаний двуслойной оболочки
4.7 Выводы по главе
ЗАКЛЮЧЕНИЕ.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
ПРИЛОЖЕНИЕ 1.

ВВЕДЕНИЕ
Актуальность


Одной из основных тенденций развития современной техники является широкое использование для изготовления различных конструкций композиционных материалов, состоящих из структурных компонентов с существенно различными физико-механическими свойствами. Однако эффективность конструктивных решений во многом зависит от правильного учета специфики механического поведения композитов под нагрузкой [5, 2]. Преимущества композиционных материалов наиболее полно реализуются в тонкостенных элементах конструкций [, ], в частности, в оболочках вращения. Ограничимся анализом оболочек вращения, не содержащих продольного силового набора и ребер жесткости, направленных под углом к направляющей. Неоднородность структуры оказывает существенное влияние на особенности напряженно-деформированного состояния оболочечной конструкции, которое отличается от напряженного состояния традиционных оболочек из однородных изотропных материалов [, ]. Особенно это относится к таким случаям, когда конструкции работают в экстремальных условиях нагружения. В связи с этим представляется важным учет в модели проектируемой конструкции специфики используемого для ее изготовления материала. Представляются важными следующие аспекты, которые должны быть отражены в математической модели. Композиционные материалы обладают существенной анизотропией характеристик упругости и прочности. По данным работ [, ], модули упругости в продольном и поперечном (по отношению к армированию) направлении различаются в -0 раз, пределы прочности на растяжение вдоль и поперек волокон - в -0 раз, а пределы прочности на растяжение вдоль волокон и сдвиг - до 0 раз. Прочность межслоевого сдвига при некоторых технологиях изготовления оболочек может быть в несколько раз ниже прочности сдвига внутри слоя. Поэтому при моделировании необходимо, с одной стороны, чтобы модель учитывала анизотропию, а с другой стороны - чтобы учитывались все компоненты тензора напряжений, которые могут оказать существенное влияние на прочность [, 3]. Наличие элементов подкрепления, нагруженных и защемленных кромок приводит к появлению краевых эффектов, в зоне которых напряжения могут значительно превышать напряжения вдали от указанных концентраторов []. Некоторые из этих особенностей имеются и у изотропных оболочек (такие, как краевой эффект Лява [2]). Поэтому требуется надежное вычисление напряжений в зоне краевых эффектов []. Наличие термических воздействий в сочетании с неоднородностью материала приводят к значительным термоупругим напряжениям и деформациям [, , ]. Модель деформирования оболочечной конструкции при действии силовых и температурных воздействий должна поэтому строиться на основе определяющих соотношений материала с учетом термоупругости []. Однонаправлено армированные волокнистые материалы типа стекло- и углепластиков разрушаются хрупко, и их диаграмма деформирования линейна вплоть до разрушения []. Поэтому расчет конструкций из них проводится, как правило, в линейном приближении. Перекрестно армированные материалы обладают способностью разрушаться при напряжениях, значительно превышающих уровень, при котором происходит начальное разрушение (микротрещины связующего и растрескивание податливых поперечно армированных слоев), при этом трещины тормозятся на границах раздела слоев. Поэтому при моделировании конструкций, работающих в экстремальных условиях нагружения, необходим учет изменения физико-механических свойств материалов при начальном разрушении [, , , ]. Важной особенностью токостенных конструкций является их способность разрушаться от потери устойчивости при напряжениях, не превышающих предела пропорциональности материала. Потеря устойчивости обусловлена нелинейными составляющими деформаций. Как и для изотропных оболочек, критические нагрузки потери устойчивости могут зависеть от начальных неправильностей формы [], учет которых может производиться заданием параметра волнообразования, определяемого технологией изготовления. В конструкциях, подверженных действию вибрационных нагрузок, при проектировании требуется обеспечить отсутствие резонанса, т. Моделирование малых свободных колебаний предполагает учет инерционных сил.

Рекомендуемые диссертации данного раздела

28.06.2016

+ 100 бесплатных диссертаций

Дорогие друзья, в раздел "Бесплатные диссертации" добавлено 100 новых диссертаций. Желаем новых научных ...

15.02.2015

Добавлено 41611 диссертаций РГБ

В каталог сайта http://new-disser.ru добавлено новые диссертации РГБ 2013-2014 года. Желаем новых научных ...


Все новости

Время генерации: 0.242, запросов: 244