Математическое моделирование, разработка методов и программного комплекса для настройки параметров типовых законов регулирования динамических систем с запаздыванием

Математическое моделирование, разработка методов и программного комплекса для настройки параметров типовых законов регулирования динамических систем с запаздыванием

Автор: Спорягин, Кирилл Владимирович

Шифр специальности: 05.13.18

Научная степень: Кандидатская

Год защиты: 2010

Место защиты: Санкт-Петербург

Количество страниц: 237 с. ил.

Артикул: 4902016

Автор: Спорягин, Кирилл Владимирович

Стоимость: 250 руб.

Математическое моделирование, разработка методов и программного комплекса для настройки параметров типовых законов регулирования динамических систем с запаздыванием  Математическое моделирование, разработка методов и программного комплекса для настройки параметров типовых законов регулирования динамических систем с запаздыванием 

1. МОДЕЛИ УПРАВЛЯЕМЫХ ДИНАМИЧЕСКИХ СИСТЕМ С ЗАПАЗДЫВАНИЕМ И ПРОБЛЕМЫ СИНТЕЗА РЕГУЛЯТОРОВ.
1.1. Типовые модели непрерывных процессов как объектов управления с запаздыванием
1.2. Преимущества и недостатки основных подходов к разработке управляемых систем с запаздыванием.
1.3. Проблемы настройки одноконтурных систем регулирования для инерционных объектов с запаздыванием.
1.4. Многомерные системы регулирования объектов с запаздыванием
1.5. Программные продукты для моделирования и расчета типовых регуляторов .
1.6. Выводы
2. КОМПЕНСАЦИОННЫЙ МЕТОД НАСТРОЙКИ ТИПОВЫХ РЕГУЛЯТОРОВ
2.1. Идея и основные соотношения компенсационного метода.
2.2. Настройка типовых регуляторов по различным критериям качества управления.
2.3. Учет ограничений на управляющие воздействия.
2.4. Обеспечение заданного запаса устойчивости по фазе и амплитуде.
2.5. Примеры применения компенсационного метода
2.6. Анализ эффективности компенсационного метода
2.7. Выводы
3. КОМБИНИРОВАННЫЙ МЕТОД НАСТРОЙКИ ТИПОВЫХ РЕГУЛЯТОРОВ ДЛЯ МНОГОСВЯЗНЫХ ИНЕРЦИОННЫХ ОБЪЕКТОВ С ЗАПАЗДЫВАНИЕМ
3.1. Постановка задачи расчета параметров многомерного типового регулятора
3.2. Основные соотношения комбинированного метода расчета параметров многомерных типовых регуляторов.
3.3. Аналитические методы настройки параметров многомерных типовых регуляторов.
3.4. Частичноаналитические и поисковый методы настройки параметров многомерных типовых регуляторов
3.5. Составление пар управление выход
3.6. Учет динамики многосвязного объекта при составлении пар управление выход.
3.7. Выбор возмущающих воздействий при настройке типовых регуляторов для многосвязных объектов.1
3.8. Учет ограничений на управляющие воздействия при настройке многомерного типового регулятора.
3.9. Настройка многомерных типовых регуляторов для объектов с прямоугольной передаточной матрицей
3 Устойчивость и грубость регуляторов, синтезированных с применением комбинированного метода
3 Выводы.
4. ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ РАСЧЕТА И АНАЛИЗА ФУНКЦИОНИРОВАНИЯ МНОГОМЕРНЫХ ТИПОВЫХ РЕГУЛЯТОРОВ
4.1. Функции программного комплекса
4.2. Алгоритмы программного комплекса
4.3 Пример работы с программным комплексом.
4.4. Выводы.
5. АНАЛИЗ РАЗРАБОТАННЫХ МЕТОДОВ НАСТРОЙКИ ПАРАМЕТРОВ МНОГОМЕРНЫХ ТИПОВЫХ РЕГУЛЯТОРОВ
5.1. Сравнение комбинированного метода настройки типовых многомерных регуляторов с децентрализованным 1МС регулятором.
5.2. Анализ вариантов формирования децентрализованных многомерных регуляторов в рамках комбинированной структуры.
5.3. Исследование учета ограничений на управляющие воздействия многомерного комбинированного регулятора.
5.4. Анализ чувствительности комбинированного метода к неточностям моделей управляемого объекта.
5.5. Выводы
ЗАКЛЮЧЕНИЕ.
СПИСОК ЛИТЕРАТУРЫ


При наличии запаздывания в состояниях или управляемых переменных, формулы значительно усложняются см. При этом основной недостаток формирование управления по непосредственно не контролируемым состояниям или их неточным оценкам остается. Управление с упреждением прогнозированием используется в основном для объектов с запаздыванием. Основная идея состоит в использовании элементов прогноза переменных на время запаздывания, благодаря чему осуществляется компенсация запаздываний в контуре управления. Классический упредитель Смита . Основной принцип работы классического учредителя Смита ясен из рис. Рис. Здесь Ур передаточная функция синтезируемого регулятора, Нр передаточная функция объекта, представленная в виде 1. Л,р дробнорациональная часть модели объекта, т, запаздывание в модели объекта. Как можно видеть из этого выражения, знаменатель передаточной функции системы не содержит запаздывания, поэтому для синтеза регулятора могут быть использованы известные методы для объектов без запаздывания. Отметим, что для многомерных систем с запаздыванием можно построить компенсатор, аналогичный упредителю Смита и приводящий к тому, что запаздывающие члены в характеристическом уравнении замкнутой системы исчезают. Однако, в отличие от одномерной задачи, где синтез компенсатора сводится к прогнозу выхода на время запаздывания, в многомерном случае компенсация связана с прогнозом некоторых фиктивных переменных состояния в заданные моменты времени 7. На практике изза не точного соответствия выбранной модели реальному объекту компенсация запаздываний не является полной, что может отрицательно сказаться па качестве управления. Оптимизация на основе прогнозирующей модели. ДмА,. Ди 0, ,. V, Си. Сп Сах Сп. Си векторы коэффициентов ослабления ограничений по соответствующим переменным. Нри. Задача минимизации 1. Наряду с такими важными достоинствами, как универсальность, непосредственный учет запаздываний в системе управления, учет перекрестных
связей как в статике, гак и в динамике, данный подход обладает, тем не менее, рядом недостатков. При характерном для производственных объектов существенном несоответствии модели реальному процессу управление не является оптимальным, более того, теория не дает гарантий устойчивости, а при учете ограничений на величину управляющих воздействий отсутствия перехода в режим автоколебаний с выходом на границы допусков. Вместе с тем ослабление управлений для придания алгоритму с прогнозирующей моделью свойства грубости и робастности ослабляет а то и вовсе ликвидирует его преимущества по отношению к регуляторам с существенно более простой структурой. Наконец, решение сложной задачи многошаговой оптимизации на каждом шаге управления налагает дополнительные требования на быстродействие вычислительного устройства, которое должно реализовывать данный алгоритм. К типовым принято относить пропорциональный П, интегральный Непропорциональноинтегральный ПИ и проиорциональноинтегральнодифференциальный ПИД законы регулирования. Нр кпАк1р. ТаР ТиР
Из формул 1. ПИДрегулятора Г1, ПИ, И, ПД. Ти со. Для того чтобы избавиться от Дсоставляющей, необходимо положить кд 0 или Тд 0. При правильной настройке типовые регуляторы наиболее рациональным образом сочетают быстроту реакции Псоставляющая с осмотрительностью Исоставляющая и элементами прогноза будущего Дсоставляющая. Разработчики обращаются к проверенным десятилетиями практики автоматизации типовым регуляторам, поскольку они просто реализуются средствами проектирования 8С АО Асистем, не предъявляют жестких требований к знанию модели объект управления и не требуют вычисления производных высокого порядка, что чревато значительными погрешностями в условиях сильных измерительных помех. Вместе с тем непрекращающийся поток публикации 1 по настройке типовых регуляторов для одномерных и многомерных систем свидетельствует о наличии нерешенных проблем в этой области. В последующих параграфах дан краткий обзор методов и программных продуктов для настройки типовых регуляторов для одномерных и многомерных объектов управления.

Рекомендуемые диссертации данного раздела

28.06.2016

+ 100 бесплатных диссертаций

Дорогие друзья, в раздел "Бесплатные диссертации" добавлено 100 новых диссертаций. Желаем новых научных ...

15.02.2015

Добавлено 41611 диссертаций РГБ

В каталог сайта http://new-disser.ru добавлено новые диссертации РГБ 2013-2014 года. Желаем новых научных ...


Все новости

Время генерации: 0.242, запросов: 244