Синтез типовых нейрорегуляторов состояния для класса нелинейных динамических объектов с особенностями поведения

Синтез типовых нейрорегуляторов состояния для класса нелинейных динамических объектов с особенностями поведения

Автор: Никонов, Антон Николаевич

Шифр специальности: 05.13.01

Научная степень: Кандидатская

Год защиты: 2012

Место защиты: Санкт-Петербург

Количество страниц: 174 с. ил.

Артикул: 6525535

Автор: Никонов, Антон Николаевич

Стоимость: 250 руб.

Синтез типовых нейрорегуляторов состояния для класса нелинейных динамических объектов с особенностями поведения  Синтез типовых нейрорегуляторов состояния для класса нелинейных динамических объектов с особенностями поведения 

ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ.
1 ПРОБЛЕМЫ СОЗДАНИЯ РЕГУЛЯТОРОВ ДЛЯ НЕЛИНЕЙНЫХ ОБЪЕКТОВ С ОСОБЕННОСТЯМИ ПОВЕДЕНИЯ.
1.1 Формирование класса нелинейных объектов.
1.1.1 Признаки нелинейных систем
1 Л.2 Проблемы моделирования нелинейных систем
1.2 Проблемы синтеза нелинейных законов управления
1.2.1 Целевые инвариантные множества
1.2.2 Синтез нелинейных регуляторов.
1.2.3 Условия достижимости целевого инварианта
1.3 Проблемы разработки технического обеспечения
1.4 Задачи диссертационного исследования
2 МЕТОД СИНТЕЗА ЦЕЛЕВЫХ ИНВАРИАНТОВ ДЛЯ ОБЪЕКТОВ С ТИПОВЫМИ ОСОБЕННОСТЯМИ.
2.1 Метод синтеза целевых инвариантов для объектов с типовыми бифуркациями
2.2 Подходы к определению типовой бифуркации объекта
2.3 Процедура синтеза целевых инвариантов.
2.3.1 Тестовый класс объектов.
2.3.2 Выбор типовой бифуркации
2.3.3 Расчт параметров типовой бифуркации
2.3.4 Выбор обобщнных целевых инвариантов
2.3.5 Пример синтеза нелинейного закона управления
2.4 Об эквивалентности моделей типовых бифуркаций.
2.4.1 Эквивалентность в точке бифуркации
2.4.2 Эквивалентность в окрестности точки бифуркации
2.4.3 Диффеоморфная эквивалентность моделей.
2.5 Выводы по главе.
3 ПРОБЛЕМА НАЧАЛЬНЫХ УСЛОВИЙ В НЕЛИНЕЙНЫХ СИСТЕМАХ С ОСОБЕННОСТЯМИ КАНАЛА УПРАВЛЕНИЯ
3.1 Условия возникновения особенностей канала управления
3.2 Влияние особенностей целевых инвариантов
3.3 Влияние особенностей канала внутреннего управления
3.4 Влияние особенностей канала внешнего управления.
3.5 Выводы по главе.
4 МЕТОД СИНТЕЗА НЕЙРОРЕГУЛЯТОРОВ СОСТОЯНИЯ ДЛЯ КЛАССА НЕЛИНЕЙНЫХ ОБЪЕКТОВ С ОСОБЕННОСТЯМИ.
4.1 Метод синтеза нейрорегуляторов состояния
4.2 Исследование нелинейных управляемых систем с целевым инвариантом и типовыми особенностями
4.2.1 Методика сравнения замкнутых систем
4.2.2 Сравнительный анализ нелинейных систем.
4.3 Проблема начальных условий в задаче настройки нейрорегулятора состояния.
4.3.1 Методика настройки нейросетевого регулятора.
4.3.2 Пример расчта начальных условий
4.4 Синтез нейрорегуляторов для объектов с особенностями канала управления
4.4.1 О реализации аналитических законов в нелинейных системах с особенностями канала управления
4.4.2 Нейросетевая система с особенностью дтипа.
4.4.3 Нейроуправление флаттером нелинейная задача.
4.5 Выводы по главе
5 ОБЩЕПРОМЫШЛЕННЫЙ НЕЙРОРЕГУЛЯТОР СОСТОЯНИЯ НЕЛИНЕЙНЫХ ОБЪЕКТОВ
5.1 Оценка времени отклика нейрорегулятора на базе ПЛК
5.1.1 Программная реализация нейрорегулятора.
5.1.2 Моделирование системы управления с нейрорегулятором на базе контроллера БМАТС
5.2 Оценка характеристик нейрорегулятора с ускорителем
5.3 Типовые интерфейсы нейрораулятора.
5.4 Выводы по главе.
ЗАКЛЮЧЕНИЕ.
СПИСОК ЛИТЕРАТУРЫ


С целью дальнейшего уточнения класса необходимо выделить характерные признаки объектов с нелинейной динамикой и сформировать дополнительные ограничения на форму моделей (1. Рассмотрим примеры нелинейных объектов и сформируем характерные признаки интересующего класса. Первый пример нелинейного объекта — шаровая цементная мельница для помола клинкера. В процессе помола клинкер непрерывно подаётся в мельницу, в ней перемалывается и выгружается на выходе. Один из нелинейных эффектов заключается в образовании тромба вследствие перегрузки мельницы материалом. Поведение системы определяется нелинейной характеристикой <р(д:,г/), жесткостью клинкера с/, скоростью загрузки и и начальным заполнением мельницы . Рисунок 1. Нелинейность модели (1. Ф(л. Рисунок 1. Моделирование шаровой мельницы, (а) Вид нелинейной характеристики мельницы (р(х,г/); (б) неустойчивый процесс помола в условиях превышения критической скорости загрузки клинкера и (эффект закупоривания мельницы). При моделировании системы (1. Рисунок 1. В последнем случае на графиках переходных процессов наблюдаются характерные участки “временного зависания” (Рисунок 1. Подобный эффект получил название “призрака” или “руин” аттрактора [,]. Цель управления цементной мельницей состоит в поддержании заданного значения выхода и степени помола клинкера. Последняя задача решается за счёт замыкания системы через сепаратор и линию возврата клинкера для повторного помола. Синтез систем управления усложняется неточностью задания нелинейной характеристик (р(-), вариацией жёсткости материала с1, нелинейной положительной обратной связью через сепаратор. Указанные признаки можно формализовать на основе понятия инвариантного множества. Д/,. Я. (1. Инвариантные множества могут образовывать в пространстве системы структуру, изменяющуюся под действием возмущений. Она может быть использована для характеристики поведения во времени. Простейшим типом инвариантного множества является стационарная точка д-0, для которой справедливо равенство /(*0,0,0) = 0. Каждому инвариантному множеству отвечает один из свойственных объекту динамических режимов, поэтому подобное множество рассматривается далее как естественный режим функционирования. Рассмотрим пример описания поведения объекта через систему инвариантных множеств. Для этого обратимся к следующей модели — модели компрессионной системы, состоящей из камеры высокого давления, осевого компрессора и клапана травления (Рисунок 1. С / ж [гг. Рисунок 1. Поведение модели компрессионной системы, (а) Схема модели; (б) режим помпажных колебаний вместе с вращением и образованием ячеек пониженного давления (показан массовый расход на входе в камеру); (в) эволюция поведения системы при изменении управляющего параметра у (расход через клапан травления). Сплошной линией на рисунке (в) отмечены кривые устойчивых стационарных точек, штриховой — неустойчивых, линия

Рекомендуемые диссертации данного раздела

28.06.2016

+ 100 бесплатных диссертаций

Дорогие друзья, в раздел "Бесплатные диссертации" добавлено 100 новых диссертаций. Желаем новых научных ...

15.02.2015

Добавлено 41611 диссертаций РГБ

В каталог сайта http://new-disser.ru добавлено новые диссертации РГБ 2013-2014 года. Желаем новых научных ...


Все новости

Время генерации: 0.317, запросов: 244